[image: image3.jpg]

[image: image4.png]l.y. Windows Server 2008

IIS7 Integrated Pipeline Mode vs. Classic Pipeline Mode
Prepared by
Microsoft Consulting Services, West Region

Monday, 11 February 2008
Version .2.0
Prepared by
Mannan Mohammed, Sr. Architect
Gang Pan, AcutePath, Inc.
Contributors

Mike Volodarsky, Program Manager

Stefan Schachow, Senior Program Manager

This file does not collect any personal information.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2007 Microsoft Corporation. All rights reserved.

Microsoft, Outlook, SharePoint, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

11
Introduction

22
IIS7 Request Processing

13
IIS7 Application Pools

13.1
Integrated Mode

13.2
Classic Mode

24
Key Differences Between Integrated Mode and Classic Mode

34.1
ASP.NET Support

34.2
Configuration Settings

54.3
Authentication, Authorization and Impersonation

54.3.1
Different windows identity in Forms authentication

64.3.2
Default Authentication_OnAuthenticate event does not raise in Integrated mode

64.3.3
Passport Network credentials authentication is not supported in Windows Vista

64.3.4
PassportAuthentication module is not part of the Integrated pipeline

64.3.5
HttpRequest.LogonUserIdentity throws an exception when accessed before PostAuthenticateRequest

74.3.6
In Integrated mode, ASP.NET modules will receive the first unauthenticated request to IIS when Anonymous authentication is disabled

74.3.7
ASP.NET cannot impersonate the client identity until PostAuthenticateRequest

74.3.8
Using Windows and Forms authentication together in Integrated mode is not supported

74.3.9
Migration Issues and Workarounds

104.4
Requst Limits and URL Processing

104.4.1
In Integrated mode, the ASP.NET request time-out is applied multiple times during the request, allowing the request to execute longer

104.4.2
Large, valid forms auth tickets (length > 2048 bytes) present in the query string are rejected by IIS 7.0

104.4.3
In Integrated mode Request.RawUrl contains the new query string after RewritePath is called

104.4.4
Migration Issues and Workarounds

114.5
Response Header Processing

114.5.1
In Integrated mode, IIS always rejects new lines in response headers (even if ASP.NET enableHeaderChecking is set to false)

124.5.2
Response headers are removed in Integrated mode after calling ClearHeader in a custom IHttpModule

124.5.3
Content-Type header is not generated when charset and content type are set to empty string

124.5.4
Migration Issues and Workarounds

134.6
Application and Module Processing

134.6.1
In Integrated mode, Application_OnError is not called for exceptions that occur in HttpApplication::Init

134.6.2
In Integrated mode, ASP.NET applications must subscribe to pipeline events during a module's Init call

144.6.3
If a configuration file error is encountered when using Integrated mode, IIS, not ASP.NET, generates the error message

144.6.4
In Integrated mode, threading and queuing settings in are ignored

144.6.5
The ordering of modules is reversed for PreSendRequestHeaders and PreSendRequestContent when using Integrated mode

144.6.6
PreSendRequestHeaders and PreSendRequestContent events will raise together for each module

144.6.7
In Integrated mode, both synchronous and asynchronous events raise for each module before the next module executes

154.6.8
HttpContext, HttpRequest and HttpResponse are not available in the start event, so those objects can’t be used in Application_OnStart().

154.6.9
Integrated mode applications may write to a response in EndRequest after an exception has been formatted and written to the response

154.6.10
Migration Issues and Workarounds

174.7
Others

174.7.1
Server.ClearError in EndRequest does not clear exception message in Integrated mode

174.7.2
In Integrated mode, ASP.NET no longer suppresses the content type when the response is empty

174.7.3
Trace settings are not transferred to Server.Transfer target page

174.7.4
New Or Changed API Members for Integrated Mode

174.7.5
Migration Issues and Workarounds

215
Summary

226
References

237
Appendix

1 Introduction

Internet Information Services 7.0 (IIS7) introduces many architectural enhancements. One such significant enhancements is made to the request processing pipeline, which is the focus of this paper.
IIS7 operates in two modes: integrated mode and classic mode. Integrated mode is the default configuration for IIS7 application pools; classic mode (sometime also referred as ISAPI mode) is identical to IIS6, which is for backward compatibility. This document will discuss these two modes from both administrative and development perspectives, such as their differences, impacts on existing web application, advantages and migration options.

Let’s first look at the new IIS7 architecture:

[image: image1.emf]Integrated Mode

Authentiction

Basic

Forms

ExecuteHandler

ASPX

(ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP

Request

HTTP

Response

Classic Mode

Aspnet_isapi.dll

Authentication

Forms

Windows

Map

Handler

ASPX

Trace

...

...

...

Authentiction

Basic

Forms

ExecuteHandler

ASPX

(ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP

Request

HTTP

Response

Figure 1: IIS7 Architecture Overview
As depicted in the Figure 1, IIS7 consists of key components that perform important functions for the application and web server roles in Windows Server 2008. Each component has different responsibilities, such as listening for requests made to the server, managing processes, and reading configuration files. These components include protocol listeners, such as Http.sys, and services, such as WWW service and Windows Activation Service (WAS). A detailed description of different components can be found at:

· Developer Story Internet Information Services: http://msdn2.microsoft.com/en-us/library/bb757017.aspx
· Introduction to IIS7 Architecture: http://www.iis.net//articles/view.aspx/IIS7/Extending-IIS7/Getting-Started/Introduction-to-IIS-7-Architecture
2 IIS7 Request Processing
In IIS 7.0, the IIS and ASP.NET request pipelines are combined to process requests with an integrated approach. The new request-processing architecture consists of an ordered list of native and managed modules that perform specific tasks in response to requests.
In a worker process, an HTTP request passes through several ordered steps, called events. At each event, a native module processes part of the request, such as authenticating the user or adding information to the event log. If a request requires a managed module, the native ManagedEngine module creates an AppDomain, where the managed module can perform the necessary processing, such as authenticating a user with Forms authentication. When the request passes through all of the events in the IIS7 Core, the response is returned to HTTP.sys.

[image: image2.emf]Integrated Mode

Authentiction

Basic

Forms

ExecuteHandler

ASPX

(ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP

Request

HTTP

Response

Classic Mode

Aspnet_isapi.dll

Authentication

Forms

Windows

Map

Handler

ASPX

Trace

...

...

...

Authentiction

Basic

Forms

ExecuteHandler

ASPX

(ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP

Request

HTTP

Response

Figure 2: IIS7 Integrated & Classic Mode
The new modular design in IIS7 (as shown in Figure 2) provides several benefits over design of IIS6. First, all file types can use features that were originally available only to managed code. For example, you can now use ASP.NET Forms authentication and Uniform Resource Locator (URL) authorization for static files, Active Server Pages (ASP) files, and all other file types, such as PHP application in your sites and applications.

Second, this design eliminates the duplication of several features in IIS and ASP.NET. For example, when a client requests a managed file, the server calls the appropriate authentication module in the integrated pipeline to authenticate the client. In previous versions of IIS, this same request would go through an authentication process in both the IIS pipeline and in the ASP.NET pipeline.

Third, you can manage all of the modules in one location which is enabled via new configuration system integrated IIS configuration and ASP.NET configuration instead of managing some features in IIS and some in the ASP.NET configuration. This simplifies the administration of sites and applications on the server.
In the integrated mode, a new managed handler for ASP.NET is loaded as part of the processing pipeline. However, in order to preserv backwards compatibility with IIS6, IIS7 introduces a classic mode, where the aspnet_isapi.dll that ships with asp.net is loaded as an ISAPI DLL.

The selection of integrated mode vs. classic mode is done thru a setting in the Application pool. The Application pools are discussed next.

3 IIS7 Application Pools
Application pools separate applications by process boundaries to prevent an application from affecting another application on the server. In IIS 7.0, application pools continue to use IIS 6.0 worker process isolation mode. In addition, you can now specify a setting that determines how to process requests that involve managed resources: Integrated mode or Classic mode.

In IIS 6.0, worker process isolation mode and IIS 5.0 isolation mode are set at the server level. This makes it impossible to run both isolation modes on the same server. However, in IIS 7.0, Integrated mode and Classic mode are set at the application pool level, which enables you to run applications simultaneously in application pools with different process modes on the same server.
3.1 Integrated Mode
When an application pool is in Integrated mode, you can take advantage of the integrated request-processing architecture of IIS and ASP.NET. When a worker process in an application pool receives a request, the request passes through an ordered list of events. Each event calls the necessary native and managed modules to process portions of the request and to generate the response as illustrated in Figure 2.

There are several benefits to running application pools in Integrated mode. First the request-processing models of IIS and ASP.NET are integrated into a unified process model. This model eliminates steps that were previously duplicated in IIS and ASP.NET, such as authentication. Additionally, Integrated mode enables the availability of managed features to all content types.

3.2 Classic Mode
When an application pool is in Classic mode, IIS 7.0 handles requests as in IIS 6.0 worker process isolation mode. ASP.NET requests first go through native processing steps in IIS and are then routed to Aspnet_isapi.dll for processing of managed code in the managed runtime. Finally, the request is routed back through IIS to send the response. In classic mode, the ASP.NET pipeline (BeginRequest, AuthenticateRequest,…, EndRequest) runs entirely within the IIS pipeline’s EXECUTE_REQUEST_HANDLER event. Think of ASP.NET in classic mode as a pipeline within a pipeline.
This separation of the IIS and ASP.NET request-processing models results in duplication of some processing steps, such as authentication and authorization. Additionally, managed code features, such as forms authentication, are only available to ASP.NET applications or applications for which you have script mapped all requests to be handled by aspnet_isapi.dll.
4 Key Differences Between Integrated Mode and Classic Mode
As discussed earlier, Integrated mode provides a new request processing API. The new API is defined by a new very ASP.NET-like pipeline that provides many hook points for processing requests. One exciting aspect of the new pipeline is that it integrates .NET directly into the pipeline processing, so request engines like ASP, ASP.NET, PHP, Python, etc., don’t need to use ISAPI any longer for providing application or system-level services if the appropriate handlers are provided.

For ASP.NET the integration is seamless-ASP.NET and the IIS 7 pipeline are basically one and the same in integrated mode so all modules that fire as part of HttpApplication are now firing right out of the IIS engine instead of through the ISAPI interface.
The new pipeline is closely modeled after the ASP.NET Http Pipeline and uses the same concepts of modules and handlers to allow hook points into the pipeline processing. The API provided comes in both native and .NET flavors and the .NET version uses compatible naming conventions as the ASP.NET pipeline. So you will find the same HttpApplication events on the Integrated Pipeline that you have gotten used to with ASP.NET. What this means for you as a developer is that ASP.NET in the Integrated Pipeline can now run without the ASPNET_ISAPI.DLL involved, instead using the IIS 7 pipeline to handle processing of modules and handlers. The new model promises much more control over Web request processing including the ability to hook into core Web server functionality that affects every request fired against the Web server as a whole. You no longer need to write ISAPI handlers or filters to get to this low level; instead, you can use standard ASP.NET-style modules to accomplish most of this functionality.
Classic mode provides backwards compatibility for ASP.NET application running in existing IIS6 processing model using aspnet_isapi.dll. All existing ASP.NET application should work in Classic mode without any changes except applications use some specific IIS6 features, we will discuss in details in next section.

From a performance standpoint, there is not a lot of difference between the integrated mode and the classic mode. Integrated mode is strongly recommended instead of Classic mode when you migrate your applications from IIS6 to IIS7. Moving to Classic mode will make your application unable to take advantage of ASP.NET improvements made possible in Integrated mode, leveraging future features from both Microsoft and third parties that may require the Integrated mode. Use Classic mode as a last resort if you cannot apply the specified workaround.
The following sections will discuss the differences between integrated pipeline mode and Classic pipeline mode, and the corresponding migration issues and workarounds for Integrated mode and Classic mode respectively. http://mvolo.com/blogs/serverside/archive/2007/12/08/IIS-7.0-Breaking-Changes-ASP.NET-2.0-applications-Integrated-mode.aspx maintains a list of migration issues, you should check it for morst up-to-date issues.
4.1 ASP.NET Support
ASP.NET 1.1 is not supported in Integrated mode. To run ASP.NET application under 1.1 framework, application pool must be set to Classic mode.

ASP.NET 2.0 and above are supported in both Integrated mode and Classic mode.
4.2 Configuration Settings
The system.webServer configuration section in the Web.config file specifies IIS 7.0-specific settings that are applied to the Web application. Some settings apply only to IIS 7.0 Integrated mode and do not apply to Classic mode. In particular, any managed modules and handlers specified in the system.WebServer section of the Web.config file are ignored if the application is running in Classic mode. Instead, the managed modules and handlers must be defined as in earlier versions of IIS, in the httpModules and httpHandlers elements of the system.web section.

Furthermore, IIS7 uses preconditions on the module or handler to restrict the conditions under which it executes.

For handlers, if you set preCondition="integratedMode" in the <handler> mapping, the handler will only run in integrated mode. On the other hand, if you set preCondition="classicMode" the handler will only run in classic mode. And if you omit both of these, the handler can run in both modes, although this is not possible for a managed handler.

For modules, if you set preCondition=”managedHandler” in the <module> entry, the module will only run for managed requests (a managed request is a request that has a managed handler). If you omit this, the module will run for all requests. Managed modules in the <modules> section are only called if you're running in the integrated pipeline. If you're running in classic mode, then <httpModules> is used.

Note that the “integratedMode” and “classicMode” preconditions only apply to handlers, and the “managedHandler” precondition only applies to modules. Also note that there are other preconditions that we have not discussed here. For example, we can restrict the handler or module to a version of the framework, or specific processor architecture (32-bit or 64-bit).

The ASP.NET <httpHandlers> section has no knowledge of preconditions, and so you should never use preconditions in httphandlers or httpmodules.

The differences in configuration settings cause certain migration issues that are best illustrated in the table below:

	Migration Issues
	Description
	Workarounds
	Is Applicable

	
	
	
	Classic Mode
	Integrated Mode

	ASP.NET applications require migration when specifying configuration in <httpModules> or <httpHandlers>.

	You will receive a 500 - Internal Server Error. This can include HTTP Error 500.22, and HTTP Error 500.23: An ASP.NET setting has been detected that does not apply in Integrated managed pipeline mode.

It occurs because ASP.NET modules and handlers should be specified in the IIS <handlers> and <modules> configuration sections in Integrated mode.

	1) You must migrate the application configuration to work properly in Integrated mode. You can migrate the application configuration with AppCmd:

> %windir%\system32\inetsrv\Appcmd migrate config "<ApplicationPath>"
2) You can migrate manually by moving the custom entries in in the <system.web>/<httpModules> and <system.web>/<httpHandlers> configuration manually to the <system.webServer>/<handlers> and <system.webServer>/<modules> configuration sections, and either removing the <httpHandlers> and <httpModules> configuration OR adding the following to your application’s web.config:

<system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
</system.webServer>
	
	

	ASP.NET applications produce a warning when the application enables request impersonation by specifying <identity impersonate=”true”> in configuration.

	You will receive a 500 - Internal Server Error. This is HTTP Error 500.24: An ASP.NET setting has been detected that does not apply in Integrated managed pipeline mode.

It occurs because ASP.NET Integrated mode is unable to impersonate the request identity in the BeginRequest and AuthenticateRequest pipeline stages.

	1) If your application does not rely on impersonating the requesting user in the BeginRequest and AuthenticateRequest stages (the only stages where impersonation is not possible in Integrated mode), ignore this error by adding the following to your application’s web.config:
<system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
</system.webServer>
2) If your application does rely on impersonation in BeginRequest and AuthenticateRequest, or you are not sure, move to classic mode.

	
	

	You receive a configuration error when your application configuration includes an encrypted <identity> section.

	You will receive a 500 – Internal Server Error. This is HTTP Error 500.19: The requested page cannot be accessed because the related configuration data for the page is invalid.
The detailed error information indicates that “Configuration section encryption is not supported”.

It occurs because IIS attempts to validate the <identity> section and fails to read section-level encryption.

	1) If your application does not have the problem with request impersonation per breaking change #2, migrate your application configuration by using AppCmd as described in breaking change #1:

> %windir%\system32\inetsrv\Appcmd migrate config "<ApplicationPath>"
This will insure that the rest of application configuration is migrated, and automatically add the following to your application’s web.config to ignore the <identity> section:

<system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
</system.webServer>
2) If your application does have the problem with request impersonation, move to classic mode.

	
	

4.3 Authentication, Authorization and Impersonation

In Integrated mode, both IIS and ASP.NET authentication stages have been unified. Because of this, the results of IIS authentication are not available until the PostAuthenticateRequest stage, when both ASP.NET and IIS authentication methods have completed. This causes the following differences between Integrated mode and Clasic mode.
4.3.1 Different windows identity in Forms authentication

When Forms Authentication is used by an application and anonymous access is allowed, the Integrated mode identity differs from the Classic mode identity in the following ways:

· ServerVariables["LOGON_USER"] is set to the name of the logged in forms authentication user.

· Request.LogonUserIdentity uses the credentials of the [NT AUTHORITY\NETWORK SERVICE] account instead of the [NT AUTHORITY\INTERNET USER] account.

This behavior occurs because in Integrated mode, authentication is performed in a single stage. Conversely, in Classic mode, authentication occurs first with IIS using anonymous access, and then with ASP.NET using Forms authentication. Because of this, the result of the authentication is always a single user, that is, the Forms authentication user. In Integrated Mode AUTH_USER/LOGON_USER will return this same user because the Forms authentication user credentials are synchronized between IIS and ASP.NET.

A side effect of this is that LOGON_USER, HttpRequest.LogonUserIdentity, and impersonation will no longer be able to access the Anonymous user credentials that IIS would have authenticated by using Classic mode.

4.3.2 Default Authentication_OnAuthenticate event does not raise in Integrated mode

In Integrated mode, the DefaultAuthenticationModule.Authenticate event no longer raises. In Classic mode, this event is raised when no authentication has occurred. In Integrated mode, an application that sets authentication mode=None, and subscribes to the DefaultAuthentication.Authenticate event, will receive an exception indicating that this feature is not supported in Integrated mode. Authentication schemes that rely on this pattern will not function.

To work around this change, Integrated mode applications may to subscribe to AuthenticateRequest instead.

4.3.3 Passport Network credentials authentication is not supported in Windows Vista

Passport Network credentials functionality has been removed in Windows Vista and in the Microsoft Windows Server® 2008 operating system, so Passport Network credentials authentication applications will not work by default in ISAPI or Integrated mode. However, Live ID is still supported on Windows 2008.
4.3.4 PassportAuthentication module is not part of the Integrated pipeline

In Integrated mode, the ASP.NET Passport Authentication Module is removed from the pipeline by default. If it is used by an application, it may be added back into the pipeline. Actually developers shouldn't attempt to use the managed Passport module anymore because it was written to use now-obsolete and no longer supported Passport APIs.
4.3.5 HttpRequest.LogonUserIdentity throws an exception when accessed before PostAuthenticateRequest

In Integrated mode, the HttpRequest.LogonUserIdentity property will throw an exception when it is accessed before PostAuthenticateRequest. If a module accesses this property before PostAuthenticateRequest, an exception will be thrown.

To avoid this behavior, do not access this property in your application, or access it after PostAuthenticateRequest completes.

4.3.6 In Integrated mode, ASP.NET modules will receive the first unauthenticated request to IIS when Anonymous authentication is disabled

In Integrated mode, when an IIS authentication scheme other then Anonymous authentication is used, the first request from the client that does not contain the required credentials will be visible to ASP.NET modules in the BeginRequest and AuthenticateRequest stages. In comparison, in Classic mode an ASP.NET application would not see such a request because it is rejected by IIS with a 401 challenge before ASP.NET has a chance to process it.

This means that ASP.NET modules will see an extra request in the BeginRequest and AuthenticateRequest stages. The request will appear in Web events and in any custom logging done in BeginRequest or EndRequest.
4.3.7 ASP.NET cannot impersonate the client identity until PostAuthenticateRequest

In Integrated mode, when client impersonation is enabled for an application by using in the application's Web.config or in Machine.config, ASP.NET will not impersonate the client until the PostAuthenticateEvent. Also, when client impersonation is enabled, modules running in the BeginRequest and AuthenticateRequest events will execute with the process identity instead of with the authenticated user's identity. This should not usually be a problem because modules rarely access resources in these events since the authenticated user has not yet been established.

However, if this is done, the process identity is used to access resources.

Because of the possible elevation of user rights that may be caused by this change, IIS will throw an exception when client impersonation is enabled. This indicates that the application should either be moved to Classic mode or that this error should be turned off by trapping the exception if it can be confirmed that resources are accessed in the BeginRequest or AuthenticateRequest events.

4.3.8 Using Windows and Forms authentication together in Integrated mode is not supported

In Integrated mode, setting Impersonate=true and using Forms authentication is not supported and will cause an error or incorrect behavior.

4.3.9 Migration Issues and Workarounds

The differences in Authentication, Authorization and Impersonation cause certain migration issues that are best illustrated in the table below:
	Migration Issues
	Description
	Workarounds
	Is Applicable

	
	
	
	Classic Mode
	Integrated Mode

	Applications cannot simultaneously use FormsAuthentication and WindowsAuthentication.

	Unlike Classic mode, it is not possible to use Forms Authentication in ASP.NET and still required users to authenticate with an IIS authentication method including Windows Authentication, Basic Authentication, etc. If Forms Authentication is enabled, all other IIS authentication methods except for Anonymous Authentication should be disabled.
In addition, when using Forms Authentication, the following changes are in effect:

· The LOGON_USER server variable will be set to the name of the Forms Authentication user.

· It will not be possible to impersonate the authenticated client. To impersonate the authenticated client, you must use an authentication method that produces a Windows user instead of Forms Authentication.

	1) Change your application to use a two level authentication scheme using Forms Authentication and another IIS authentication method.

	
	

	Windows Authentication is performed in the kernel by default. This may cause some HTTP clients that send credentials on the initial request to fail.

	IIS 7.0 Kernel-mode authentication is enabled by default in IIS 7.0. This improves the performance of Windows Authentication, and simplifies the deployment of Kerberos authentication protocol. However, it may cause some clients that send the windows credentials on the initial request to fail due to a design limitation in kernel-mode authentication. Normal browser clients are not affected because they always send the initial request anonymously.

NOTE: This breaking change applies to both Classic and Integrated modes.
	1) Disable kernel-mode authentication by setting the userKernelMode to “false” in the system.webServer/security/authentication/windowsAuthentication section. You can also do it by AppCmd as follows:

> %windir%\system32\inetsrv\appcmd set config /section:windowsAuthentication /useKernelMode:false

	
	

	Passport authentication is not supported.

	You will receive an ASP.NET 500 – Server Error: The PassportManager object could not be initialized. Please ensure that Microsoft Passport is correctly installed on the server.
Passport authentication is no longer supported on Windows Vista and Windows Server 2008.

NOTE: This breaking change applies to both Classic and Integrated modes.
	
	
	

	HttpRequest.LogonUserIdentity throws an InvalidOperationException when accessed in a module before PostAuthenticateRequest.
	You will receive an ASP.NET 500 – Server Error: This method can only be called after the authentication event.
HttpRequest.LogonUserIdentity throws an InvalidOperationException when accessed before PostAuthenticateRequest, because the value of this property is unknown until after the client has been authenticated.
	1) Change the code to not access HttpRequest.LogonUserIdentity until at least PostAuthenticateRequest

	
	

	Client impersonation is not applied in a module in the BeginRequest and AuthenticateRequest stages.

	The authenticated user is not known until the PostAuthenticateRequest stage. Therefore, ASP.NET does not impersonate the authenticated user for ASP.NET modules that run in BeginRequest and AuthenticateRequest stages. This can affect your application if you have custom modules that rely on the impersonating the client for validating access to or accessing resources in these stages.
	1) Change your application to not require client impersonation in BeginRequest and AuthenticateRequest stages.

	
	

	Defining an DefaultAuthentication_OnAuthenticate method in global.asax throws PlatformNotSupportedException
	You will receive an ASP.NET 500 – Server Error: The DefaultAuthentication.Authenticate method is not supported by IIS integrated pipeline mode.

In Integrated mode, the DefaultAuthenticationModule.Authenticate event in not implemented and hence no longer raises. In Classic mode, this event is raised when no authentication has occurred.
	1) Change application to not rely on the DefaultAuthentication_OnAuthenticate event. Instead, write an IHttpModule that inspects whether HttpContext.User is null to determine whether an authenticated user is present.

	
	

	Applications that implement WindowsAuthentication_OnAuthenticate in global.asax will not be notified when the request is anonymous

	If you define the WindowsAuthentication_OnAuthenticate method in global.asax, it will not be invoked for anonymous requests. This is because anonymous authentication occurs after the WindowsAuthentication module can raise the OnAuthenticate event.
	1) Change your application to not use the WindowsAuthentication_OnAuthenticate method. Instead, implement an IHttpModule that runs in PostAuthenticateRequest, and inspects HttpContext.User.

	
	

4.4 Requst Limits and URL Processing
This section lists request limits and URL processing changes and differences between Integrated mode and Classic mode.
4.4.1 In Integrated mode, the ASP.NET request time-out is applied multiple times during the request, allowing the request to execute longer

In Integrated mode, the managed request execution time-out is reset for each new transition in the pipeline. This means that the request can use up to (time-out *(# of module notifications)), as long as any single time-out does not exceed the maximum time set for a time-out. Slow requests may not be aborted or may take a significantly longer time before aborting, depending on the number of ASP.NET modules and how well these modules are merged together. You can avoid this behavior by reducing the length of time setting for the time-out.

4.4.2 Large, valid forms auth tickets (length > 2048 bytes) present in the query string are rejected by IIS 7.0

Requests with large cookieless ASP.NET tickets, such as used in Forms authentication, session state, and anonymous id, that in total exceed 2048 bytes are rejected by IIS. This is done for security reasons to prevent buffer overflow exploits that use large query strings. Applications that store custom data or that use very large usernames in Forms authentication tickets may see that requests are being rejected because the query strings are too large.
To change this behavior, you may adjust the maximum query string size in the IIS request-filtering configuration section.

Note: This applies to both Classic Mode and Integrated Mode.
4.4.3 In Integrated mode Request.RawUrl contains the new query string after RewritePath is called

In Integrated mode, after RewritePath is called on a URL with a new query string, the Request.RawUrl property contains the new query string. In Classic mode, it contains the old query string. To work around this change, rewrite your application so that it does not depend on the old behavior.

4.4.4 Migration Issues and Workarounds

The differences in Request Limits and URL Processing cause certain migration issues that are best illustrated in the table below:

	Migration Issues
	Description
	Workarounds
	Is Applicable

	
	
	
	Classic Mode
	Integrated Mode

	Request URLs containing unencoded “+” characters in the path (not querystring) is rejected by default.
	You will receive HTTP Error 404.11 – Not Found: The request filtering module is configured to deny a request that contains a double escape sequence.

This error occurs because IIS is by default configured to reject attempts to doubly-encode a URL, which commonly represent an attempt to execute a canonicalization attack.
	1) Applications that require the use of the “+” character in the URL path can disable this validation by setting the allowDoubleEscaping attribute in the system.webServer/security/requestFiltering configuration section in the application’s web.config. However, this may make your application more vulnerable to malicious URLs:

<system.webServer>
 <security>
 <requestFiltering allowDoubleEscaping="true" />
 </security>
</system.webServer>
	
	

	Requests with querystrings larger than 2048 bytes will be rejected by default
	You will receive an HTTP Error 404.15 – Not Found: The request filtering module is configured to deny a request where the query string is too long.

IIS by default is configured to reject querystrings longer than 2048 bytes. This may affect your application if it uses large querystrings or uses cookieless ASP.NET features like Forms Authentication and others that cumulatively exceed the configured limit on the querystring size.

NOTE: This breaking change applies to both Classic and Integrated modes.
	1) Increase the maximum querystring size by setting the maxQueryString attribute on the requestLimits element in the system.webServer/security/requestFiltering configuration section in your application’s web.config:

<system.webServer>
 <security>
 <requestFiltering>
 <requestLimits maxQueryString="NEW_VALUE_IN_BYTES" />
 </requestFiltering>
 </security>
</system.webServer>

	
	

4.5 Response Header Processing

This section lists response header processing related changes and differences between Integrated mode and Classic mode.
4.5.1 In Integrated mode, IIS always rejects new lines in response headers (even if ASP.NET enableHeaderChecking is set to false)
In Integrated mode, an exception is thrown when you try to set a response header to a value that contains \r or \n. In Classic mode, this value would be encoded by default and passed through if header encoding is turned off. For security reasons, applications should not try to write unencoded new lines in header values.

4.5.2 Response headers are removed in Integrated mode after calling ClearHeader in a custom IHttpModule

In Integrated mode, calling ClearHeaders does not automatically generate default headers. Applications that call ClearHeaders to return the headers to the default state for an .aspx page will instead clear all response headers.

4.5.3 Content-Type header is not generated when charset and content type are set to empty string

HTTP.sys no longer generates the Content-Type header when it is explicitly set to String.Empty Applications whose clients rely on having an empty Content-Type header may be affected by this change.

4.5.4 Migration Issues and Workarounds

The differences in Response Header Processing cause certain migration issues that are best illustrated in the table below:
	Migration Issues
	Description
	Workarounds
	Is Applicable

	
	
	
	Classic Mode
	Integrated Mode

	IIS always rejects new lines in response headers (even if ASP.NET enableHeaderChecking is set to false)
	If your application writes headers with line breaks (any combination of \r, or \n), you will receive an ASP.NET 500 – Server Error: Value does not fall within the expected range.

IIS will always reject any attempt to produce response headers with line breaks, even if ASP.NET’s enableHeaderChecking behavior is disabled. This is done to prevent header splitting attacks.

NOTE: This breaking change applies to both Classic and Integrated modes.

	
	
	

	When the response is empty, the Content-Type header is not suppressed
	If the application sets a Content-Type header, it will remain present even if the response is cleared. Requests to ASP.NET content types will typically have the “Content-Type: text/html” present on responses unless overridden by the application.
	1) While this should not typically have a breaking effect, you can remove the Content-Type header by explicitly setting the HttpResponse.ContentType property to null when clearing the response.

	
	

	When the response headers are cleared with HttpResponse.ClearHeaders, default ASP.NET headers are not generated. This may result in the lack of Cache-Control: private header that prevents the caching of the response on the client

	HttpResponse.ClearHeaders does not re-generate default ASP.NET response headers, including “Content-Type: text/html” and “Cache-Control: private”, as it does in Classic mode. This is because ASP.NET modules may call this API for requests to any resource type, and therefore generating ASP.NET-specific headers is not appropriate. The lack of the “Cache-Control” header may cause some downstream network devices to cache the response.
	1) Change application to manually generate the Cache-Control: private header when clearing the response, if it is desired to prevent caching in downstream network devices.
	
	

4.6 Application and Module Processing

This section lists application and module processing related changes and differences between Integrated mode and Classic mode.
4.6.1 In Integrated mode, Application_OnError is not called for exceptions that occur in HttpApplication::Init

In Integrated mode, exceptions that occur during the initialization of an application or module cannot be intercepted by using the Application.Error event. Also, applications that use Server.ClearError to recover from errors will not be able to clear errors during application initialization. This is done to prevent an application from ignoring an error during initialization. Applications that log error information for each exception that occurs will not be able to log the errors that occur during application initialization, although these errors are reported using Web events and HTTP responses.
If an application requires implementation of such exception handling during initialization, it must be run in Classic mode rather than in Integrated mode.

4.6.2 In Integrated mode, ASP.NET applications must subscribe to pipeline events during a module's Init call

ASP.NET applications using the ASP.NET HTTP pipeline could subscribe to application events outside the pipeline. However, ASP.NET applications using the IIS 7.0 Integrated mode pipeline must now always subscribe to events during the module's Init() method. The example that follows shows how an event subscription would be implemented in Init:

Public void Init(httpApplication context)
{

Context.AuthenticateRequest += new eventHandler(this.AuthenticateUser);
}
4.6.3 If a configuration file error is encountered when using Integrated mode, IIS, not ASP.NET, generates the error message

For applications running in Integrated mode, IIS 7.0 now reads application configuration files. Therefore, if malformed XML is found in the Web.config file or if there are configuration errors in the file, an error message is always generated by IIS, and not by ASP.NET. Because IIS and ASP.NET write errors in different formats, the format of the error message will differ depending on whether the application runs in Integrated mode or Classic mode. Below is an example of one type of a configuration file error as generated by IIS: Internal Server Error Config error: Configuration file is not well-formatted XML.

4.6.4 In Integrated mode, threading and queuing settings in are ignored

In Integrated mode, ASP.NET—not IIS—processes requests on threads, and does not use the threading or queuing semantics used in Classic mode. Because of this difference, applications may experience different throughput or stress behavior in Integrated mode than when running in Classic mode.

4.6.5 The ordering of modules is reversed for PreSendRequestHeaders and PreSendRequestContent when using Integrated mode

In Integrated mode, modules that subscribe to PreSendRequestHeaders and PreSendRequestContent will be notified in the opposite order of their appearance in the section. Applications that have multiple modules configured to run in either of these events will be affected by this change if they share a dependency on event ordering. To work around such issues, you can either change the order of modules in the section or run the application in Classic mode.

4.6.6 PreSendRequestHeaders and PreSendRequestContent events will raise together for each module

In Integrated mode, modules that subscribe to the PreSendRequestHeaders and PreSendRequestContent events will be notified together for the PreSendRequestHeaders and PreSendRequestContent events.

For example, an application may break if module A has a dependency on module B running first in PreSendRequestHeaders, before module A runs for PreSendRequestContent, such as if module B modifies some request state and module A relies on it.

4.6.7 In Integrated mode, both synchronous and asynchronous events raise for each module before the next module executes

In Integrated mode, both synchronous and asynchronous events will raise for each module, before the server moves on to the next module. This differs from Classic mode in which all asynchronous module notifications will execute first, followed by all synchronous notifications. There should be no effect to applications most of the time unless there is a dependence on the ordering, (see "The ordering of modules is reversed for PreSendRequestHeaders and PreSendRequestContent when using Integrated mode" elsewhere in this document).

4.6.8 HttpContext, HttpRequest and HttpResponse are not available in the start event, so those objects can’t be used in Application_OnStart().
In Integrated mode, an application cannot call Http.Current.Response.Write() in an Application_Onstart() method.

4.6.9 Integrated mode applications may write to a response in EndRequest after an exception has been formatted and written to the response

In Integrated mode, it is possible to write to and display an additional response written after an exception has occurred. This does not occur in Classic mode. If an error occurs during the request, and the application writes to the response in EndRequest after the exception has occurred, the response information written in EndRequest will be shown. This only affects requests that include unhandled exceptions. To avoid writing to the response after an exception, an application should check HttpContext.Error or HttpResponse.StatusCode before writing to the response.

4.6.10 Migration Issues and Workarounds

The differences in Application and Module Event Processing cause certain migration issues that are best illustrated in the table below:

	Migration Issues
	Description
	Workarounds
	Is Applicable

	
	
	
	Classic Mode
	Integrated Mode

	It is not possible to access the request through the HttpContext.Current property in Application_Start in global.asax.
	If your application accesses the current request context in the Application_Start method in global.asax as part of application initialization, you will receive an ASP.NET 500 – Server Error: Request is not available in this context.
This error occurs because ASP.NET application initialization has been decoupled from the request that triggers it. In Classic mode, it was possible to indirectly access the request context by accessing the HttpContext.Current property. In Integrated mode, this context no longer represents the actual request and therefore attempts to access the Request and Response objects will generate an exception.
	· Change your application code to not use the request context (recommended).

· Move the application to Classic mode (NOT recommended).

	
	

	The order in which module event handlers execute may be different then in Classic mode

	· In Integrated Mode, IIS7 established the list of modules listening to a specific event (sync and async versions of the event). Then IIS will start with the first registered module and call the sync event if registered. Then it calls the async event on the same module if registered. Then it moves to the next module that was registered and repeats the same process. This is different than classic mode where all async events across all modules were run first – then all sync events across all modules.
Applications that have multiple modules configured to run in either of these events may be affected by these changes if they share a dependency on event ordering. This is not likely for most applications. The order in which modules execute can be obtained from a Failed Request Tracing log.
	1) Change the order of the modules experiencing an ordering problem in the system.webServer/modules configuration section.
	
	

	ASP.NET modules in early request processing stages will see requests that previously may have been rejected by IIS prior to entering ASP.NET. This includes modules running in BeginRequest seeing anonymous requests for resources that require authentication.
	ASP.NET modules can run in any pipeline stages that are available to native IIS modules. Because of this, requests that previously may have been rejected in the authentication stage (such as anonymous requests for resources that require authentication) or other stages prior to entering ASP.NET may run ASP.NET modules.

This behavior is by design in order to enable ASP.NET modules to extend IIS in all request processing stages.

	1) Change application code to avoid any application-specific problems that arise from seeing requests that may be rejected later on during request processing. This may involve changing modules to subscribe to pipeline events that are raised later during request processing.

	
	

4.7 Others

This section lists other types changes and differences between Integrated mode and Classic mode.
4.7.1 Server.ClearError in EndRequest does not clear exception message in Integrated mode

In Integrated mode, calling Server.ClearError in EndRequest does not clear the exception response if an exception has occurred earlier in request processing. Applications that clear the exception message in EndRequest will not be able to remove the exception output from the response. If an application requires implementation of such exception handling during EndRequest, it must be run in Classic mode rather than in Integrated mode.
4.7.2 In Integrated mode, ASP.NET no longer suppresses the content type when the response is empty

In Integrated mode, Content Type headers are generated by ASP.NET handlers and then explicitly set by a module, even if the response is empty. Some applications will generate a content type for empty responses. If desired, you may modify applications to explicitly remove the Content Type header by setting it to NULL.
4.7.3 Trace settings are not transferred to Server.Transfer target page

Integrated mode does not support transferring trace settings to the target of a Server.Transfer operation.
4.7.4 New Or Changed API Members for Integrated Mode
In IIS 7.0 Integrated mode and at least the .NET Framework version 3.0, there are several new API members that are of interest to Web developers:

· A new property, SubStatusCode(), of the HttpResponse object is available for setting codes useful for Failed Request Tracing when configured.

· A new property, Headers(), of the HttpResponse object which provides access to headers of the response.

· Two new properties, IsPostNotification() and CurrentNotification(), of the HttpContext object that are used when providing handlers for HttpApplication events.The Headers and ServerVariables property of the HttpRequest object are now write-enabled.
4.7.5 Migration Issues and Workarounds
The following table list migration issues caused by those changes described above.
	Migration Issues
	Description
	Workarounds
	Is Applicable

	
	
	
	Classic Mode
	Integrated Mode

	DefaultHttpHandler is not supported. Applications relying on sub-classes of DefaultHttpHandler will not be able to serve requests.
	If your application uses DefaultHttpHandler or handlers that derive from DefaultHttpHandler, it will not function correctly. In Integrated mode, handlers derived from DefaultHttpHandler will not be able to pass the request back to IIS for processing, and instead serve the requested resource as a static file. Integrated mode allows ASP.NET modules to run for all requests without requiring the use of DefaultHttpHandler.

	1) Change your application to use modules to perform request processing for all requests, instead of using wildcard mapping to map ASP.NET to all requests and then using DefaultHttpHandler derived handlers to pass the request back to IIS.

	
	

	It is possible to write to the response after an exception has occurred.

	In Integrated mode, it is possible to write to and display an additional response written after an exception has occurred, typically in modules that subscribe to the LogRequest and EndRequest events. This does not occur in Classic mode. If an error occurs during the request, and the application writes to the response in EndRequest after the exception has occurred, the response information written in EndRequest will be shown. This only affects requests that include unhandled exceptions. To avoid writing to the response after an exception, an application should check HttpContext.Error or HttpResponse.StatusCode before writing to the response.
	
	
	

	It is not possible to use the ClearError API to prevent an exception from being written to the response if the exception has occurred in a prior pipeline stage
	Calling Server.ClearError during the EndRequest event does not clear the exception if it occurred during an earlier event within the pipeline. This is because the exception is formatted to the response at the end of each event that raises an exception.
	1) Change your application to call Server.ClearError from the Application_OnError event handler, which is raised whenever an exception is thrown.

	
	

	HttpResponse.AppendToLog does not automatically prepend the querystring to the URL.
	When using HttpResponse.AppendToLog to append a custom string to the URL logged in the request log file, you will manually need to prepend the querystring to the string you pass to this API. This may result in existing code losing the querystring from the logged URL when this API is used.
	1) Change your application to manually prepend HttpResponse.QueryString.ToString() to the string passed to HttpResponse.AppendToLog.

	
	

	ASP.NET threading settings are not used to control the request concurrency in Integrated mode.
	The minFreeThreads, minLocalRequestFreeThreads settings in the system.web/httpRuntime configuration section and the maxWorkerThreads setting in the processModel configuration section no longer control the threading mechanism used by ASP.NET. Instead, ASP.NET relies on the IIS thread pool and allows you to control the maximum number of concurrently executing requests by setting the MaxConcurrentRequestsPerCPU DWORD value (default is 12) located in the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ASP.NET\2.0.50727.0 key. This setting is global and cannot be changed for individual application pools or applications.
	1) To control the concurrency of your application, set the MaxConcurrentRequestsPerCPU setting.

	
	

	ASP.NET application queues are not used in Integrated mode. Therefore, the “ASP.NET Applications\Requests in Application Queue” performance counter will always have a value of 0.
	ASP.NET does not use application queues in Integrated mode.
	
	
	

	IIS 7.0 always restarts ASP.NET applications when changes are made to the application’s root web.config file. Because of this, waitChangeNotification and maxWaitChangeNotification attributes have no effect.
	IIS 7.0 monitors changes to the web.config files as well, and causes the ASP.NET application corresponding to this file to be restarted without regard to the ASP.NET change notification settings including the waitChangeNotification and maxWaitChangeNotification attributes in the system.web/httpRuntime configuration sections.
	
	
	

5 Summary
This whitepaper discussed the new IIS7 integrated pipeline processing model, specifically Integrated Mode vs. Classic Mode; compares the differences between these two modes, how to migrate existing web applications from IIS6 to IIS7 under these two different modes, and issues with corresponding workarounds during the migration process.
6 References
1. Introduction to IIS7 Architecture: http://www.iis.net//articles/view.aspx/IIS7/Extending-IIS7/Getting-Started/Introduction-to-IIS-7-Architecture.

2. Developer Story Internet Information Services: http://msdn2.microsoft.com/en-us/library/bb757017.aspx
3. Breaking Changes for ASP.NET 2.0 applications running in Integrated mode on IIS 7.0: http://mvolo.com/blogs/serverside/archive/2007/12/08/IIS-7.0-Breaking-Changes-ASP.NET-2.0-applications-Integrated-mode.aspx
4. ASP.NET Application Life Cycle Overview for IIS 7.0: http://msdn2.microsoft.com/en-us/library/bb470252.aspx
5. Upgrading ASP.NET 1.1 to IIS7 on Windows Vista & Longhorn Beta3: http://www.iis.net/articles/view.aspx/IIS7/Hosting-Web-Applications/ASP-NET/Upgrading-ASP-NET-1-1-to-IIS7-on-Windows-Vista---L
6. How to Take Advantage of the IIS7 Integrated Pipeline: http://www.iis.net/articles/view.aspx/IIS7/Extending-IIS7/Getting-Started/How-to-Take-Advantage-of-the-IIS7-Integrated-Pipel
7. ASP.NET Integration with IIS7: http://www.iis.net/default.aspx?i=928&subtabid=25&tabid=2

8. List of registry keys affecting IIS7 behavior: http://blogs.iis.net/ksingla/archive/2007/12/30/list-of-registry-keys-affecting-iis7-behavior.aspx
7 Appendix
Additionally, there is a list of Registry keys used by IIS7 will have different impacts on IIS7 behavior, especially for Classic mode and Integrated Mode. The following table lists those Registry keys.

Table: List of Registry Keys Affecting IIS7 Behavior

	Registry Key
	Description
	Is Applicable

	
	
	Classic Mode
	Integrated Mode

	HKLM\SOFTWARE\Microsoft\InetStp\Configuration\MaxWebConfigFileSizeInKB (REG_DWORD)
	Nativerd.dll uses the value of this registry key to determine the maximum allowed size (in KB) of web.config files. Configuration system will produce error “Cannot read configuration file because it exceeds the maximum file size” if it encounters a web.config larger than this size. Configuration system assumes a default value of 250 (100 in Vista RTM). Changing the value of this key will require a process restart.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\LastPriorityUPNLogon (REG_DWORD)
	This registry key switches the order in which IIS processes try to do a user logon. Default value is 0 (false) which means UPN logon is not last priority. IIS uses the UPN format first and then the “domain” and username” fields. Setting this key to non-zero switches it so that IIS uses domain and username first and then the UPN logon.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\UserTokenTTL (REG_DWORD)
	This key controls how long IIS will cache a user token before releasing it and recreating it (as needed). Default value is 900 (seconds). This key is used by token cache module in worker process and also by WAS.
	
	

	HKLM\System\CurrentControlSet\Services\WAS\Parameters\ConfigIsolationEnabled (REG_DWORD)
	Default value of this key is 1 (configuration isolation enabled). Setting this registry to key to 0 will disable configuration isolation and worker process will try to read applicationHost.config directly. Any value other than 0 or 1 is assumed as default value. If you disable configuration isolation, you might need to change ACLs of %windir%\system32\inetsrv\config folder to grant worker process read access to applicationHost.config. As configuration isolation feature is not available in Vista RTM, this key is not valid on it.
	
	

	HKLM\System\CurrentControlSet\Services\WAS\Parameters\ConfigIsolationPath (REG_SZ)
	This regkey dictates the folder path where temp apppool config files are created by WAS. Default value of this key is %systemdrive%\inetput\temp\apppools. If you change this location make sure that LocalSystem has full access to the folder. This is not valid on vista RTM as the configuration isolation feature is not available.
	
	

	HKLM\System\CurrentControlSet\Services\WAS\Parameters\AlwaysLogEvents (REG_DWORD)
	If WAS detects an invalid object for some reason, it doesn’t allow object to log errors. This registry switch allows users to see these errors. Default is 0 which means WAS won’t log events. Any non-zero value enables logging.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\ConfigPollMilliSeconds (REG_DWORD)
	Default value of this key is 0 (disabled) which means configuration system will rely on change notifications for tracking changes to configuration files. Positive value of this key means configuration system will check configuration file last modified time every N milliseconds to find changes to configuration files and will not use directory monitors.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\ConfigPollMilliSeconds (REG_DWORD)
	Default value of this key is 0 (disabled) which means configuration system will rely on change notifications for tracking changes to configuration files. Positive value of this key means configuration system will check configuration file last modified time every N milliseconds to find changes to configuration files and will not use directory monitors.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ObjectCacheTTL (REG_DWORD)
	This regKey is used by both user mode file cache and kernel mode output cache. Both these caches run a scavenger every ObjectCacheTTL seconds.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\DisableMemoryCache (REG_DWORD)
	When this regKey value is set to non-zero, file cache is disabled. By default value of this key is assumed to be 0 and file cache is enabled.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\MaxCachedFileSize (REG_DWORD)
	This regKey is used by file cache to determine maximum size (in bytes) of file which can be cached. Any file of size greater than this value is not cached. Default value of this key is 256KB.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\MaxCachedFileSizeInMB (REG_DWORD)
	MaxCachedFileSize which is the max size in bytes cannot be set to greater than 4GB. You can use MaxCachedFileSizeInMB instead to set max file size to cache greater than 4GB. If both MaxCachedFileSizeInMB and MaxCachedFileSize is defined, effective max cached file size is sum of both these values. As default value of MaxCachedFileSize is 256KB, defining only this regKey will increase effective max size by 256KB. Default value of this regKey is 0.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\MemCacheSize (REG_DWORD)
	This regKey dictates maximum amount of memory which will be used by file cache in a worker process. Default value of this regKey is 0 which means cache size is determined dynamically by looking at available physical memory and total virtual memory. When set to 0, value is adjusted every ObjectCacheTTL seconds.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\MaxOpenFiles (REG_DWORD)
	File cache caches a maximum of MaxOpenFiles number of files. Default value is 0 which means no limit.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\DoDirMonitoringForUnc (REG_DWORD)
	By default file cache doesn’t use change notifications for UNC files. Setting this regKey to 1 enables directory monitoring for UNC paths.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\FileAttributeCheckThreshold (REG_DWORD)
	File cache checks last modified time of UNC files every FileAttributeCheckThreshold seconds to detect file changes. Default value of this key is 5 (seconds). User mode and kernel mode output caches also uses this key to determine how long output of files which have virtual file mapping (handler configured with resourceType=Unspecified) should stay in response cache.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\FlushTokenCache (REG_DWORD)
	Token cache module registers for a change notification for this key and as soon as this is set to 1, it flushes the token cache. You should set this back to 0 after changing to 1.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\HttpResponseCacheTTL (REG_DWORD)
	This regKey defines http.sys response cache TTL whose default value is 900 (seconds).
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\OutputCacheTTL (REG_DWORD)
	User mode output cache uses value of this regKey as TTL. Default is 30 (seconds). A scavenger is run every TTL seconds to remove content from the cache as needed.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\EnableTraceMethod (REG_DWORD)
	This regKey is read by protocol support module (protsup.dll). Trace verb is enabled only if this registry key is set to a non-zero value. If this key is not set or is set to 0, trace requests are returned as 404.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\DigestPartialContextCacheTTL (REG_DWORD)
	First time when client connects to a site that requires digest authentication, it will receive an initial challenge. This initial challenge is based on the partial security context which needs to be kept around for the client to be able to finish the digest auth handshake. DigestPartialContextCacheTTL regKey allows you to set the timeout value which controls how long IIS should keep partial contexts around.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\DigestContextCacheTTL (REG_DWORD)
	After successful digest auth handshake full security context can be kept around but eventually upon inactivity full security contexts have to be flushed. DigestContextCacheTTL controls how long full security contexts should be stored.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\DontFlushCachedIsapiResponses (REG_DWORD)
	Default value of this key is false. When set to non-zero, ISAPI module calls SetKernelInvalidatorSet.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\ForwardServerEnvironmentBlock (REG_DWORD)
	CGI handler uses this key to determine if it should forward all the environment variables defined in the worker process are to CGI process or not. Default is true. Setting this regKey to 0 will make CGI handler to not forward environment block to CGI.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\MaxConcurrentCgisExecuting (REG_DWORD)
	This key is used by CGI handler to determine maximum number of CGIs that can execute concurrently. Default value of this is 256.
	
	

	HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\DoNotKillCgiOnRequestEnd (REG_DWORD)
	Default value is false. You can set it to true to tell CGI handler to not kill the processes on request end.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\MaxPoolThreads (REG_DWORD)
	These is soft limit on maximum number of threads which will be used and is adjusted dynamically. By default its value is 20 * number of processors.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\PoolThreadLimit (REG_DWORD)
	This is the absolute maximum thread count. Min = 64, Max = 256. Default value is calculated based on available physical memory.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ThreadTimeout (REG_DWORD)
	Default is 1800 (seconds).
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ThreadPoolStartupThreadCount (REG_DWORD)
	Number of threads to start on startup. Default is 4 if number of processors is less than 4 or equal to number of processors. Less than 1 is interpreted as 1.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ThreadPoolMaxCPU (REG_DWORD)
	If CPU usage is more than this value, new threads are not created. Default is 95.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ThreadPoolStartDelay (REG_DWORD)
	Default is 1 sec.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ThreadPoolExactThreadCount (REG_DWORD)
	Default is 0 which means not set. If set initial thread count is set to this value and thread count is not changed dynamically.
	
	

	HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\MaxConcurrency (REG_DWORD)
	This key dictates number of threads allowed to concurrently process I/O. Default value is 0 which means the system allows as many concurrently running threads as there are processors in the system.
	
	

_1263974328.vsd
Authentiction

Basic

Forms

ExecuteHandler

ASPX (ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP Request

HTTP Response

Integrated Mode

Classic Mode

Aspnet_isapi.dll

Authentication

Forms

Windows

Map Handler

ASPX

Trace

...

...

...

Authentiction

Basic

Forms

ExecuteHandler

ASPX (ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP Request

HTTP Response

_1262091610.vsd
Authentiction

Basic

Forms

ExecuteHandler

ASPX (ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP Request

HTTP Response

Integrated Mode

Classic Mode

Aspnet_isapi.dll

Authentication

Forms

Windows

Map Handler

ASPX

Trace

...

...

...

Authentiction

Basic

Forms

ExecuteHandler

ASPX (ASPNET)

Static File

Trace

Send Response

Log

Compression

ISAPI

Anonymous

Windows

...

...

HTTP Request

HTTP Response

